MOC 20774 - Perform Cloud Data Science with Azure Machine Learning (Fast Track) - Feva Works IT Education Centre

MOC 20774 - Perform Cloud Data Science with Azure Machine Learning (Fast Track) MS20774



本課程的主要目的是讓學生能夠通過使用 Azure 機器學習來分析和呈現數據,並介紹如何使用HDInsight R服務等大型數據工具進行機器學習。

完成課程後,你將可以:

- Explain machine learning, and how algorithms and languages are used

- Describe the purpose of Azure Machine Learning, and list the main features of Azure Machine Learning Studio

- Upload and explore various types of data to Azure Machine Learning

- Explore and use techniques to prepare datasets ready for use with Azure Machine Learning

- Explore and use feature engineering and selection techniques on datasets that are to be used with Azure Machine Learning

- Explore and use regression algorithms and neural networks with Azure Machine Learning

- Explore and use classification and clustering algorithms with Azure Machine Learning

- Use R and Python with Azure Machine Learning, and choose when to use a particular language

- Explore and use hyperparameters and multiple algorithms and models, and be able to score and evaluate models

- Explore how to provide end-users with Azure Machine Learning services, and how to share data generated from Azure Machine Learning models

- Explore and use the Cognitive Services APIs for text and image processing, to create a recommendation application, and describe the use of neural networks with Azure Machine Learning

- Explore and use HDInsight with Azure Machine Learning

- Explore and use R and R Server with Azure Machine Learning, and explain how to deploy and configure SQL Server to support R services

 

本課程為微軟原裝課程,並附原裝 LAB 即時實習,由微軟認可導師 (Microsoft Certified Trainer) 教授。全個課程均為一人一機實習,理論與實戰並重。

課程附送 Digital MOC 20774 -  Perform Cloud Data Science with Azure Machine Learning 原裝教材 (價值 $1,500)
 

 




課程全面教授學員有關 Perform Cloud Data Science with Azure Machine Learning 技術。


 

免費課程首堂試讀體驗,立即報名 
 

理論: 0小時
實習: 24小時
示範: 0小時
合共: 24小時
若想更了解以上資訊,歡迎致電 3106 8211 查詢。
課程費用: $4000

課程費用無須申請任何政府基金資助。

繳費方法:

一般課程:按月等額收取列明的課程費用。本中心將不早於課程開始的一個月前收取第一期費用。除第一期的費用外,每期的費用會在課程進行期間每月的首個上學日或之後收取。

組合課程:若該課程為組合課程,本中心將按該組合課程分科收費,直至所收學費為該組合課程的等額費用為止。

退款安排:
本中心備有完善之退款政策及程序。學生將會於報讀課程前獲發有關之文件,學員亦可按此閱讀。
質素保證:
本中心備有完善之免費補堂,免費重讀及彈性上課安排 (攝影課程除外),令學員更有保障。
自訂課程:
本中心歡迎各公司、機構或團體包團報讀課程,安排公司活動或同事培訓。想進一步查詢詳情,可致電熱線 3748 9826。
卓越成就:

本中心榮獲各大國際機構 (Adobe, Autodesk, Microsoft, Unity, H3C, Lenovo, Corel, Prometric, VUE, Certiport, Wacom 等等) 邀請成為香港區指定的認可教育中心及連續10 年榮獲香港社會服務聯會嘉許為「商界展關懷」公司,以表揚 Feva Works 對社會的貢獻。

除此之外,Feva Works 更連續 10 年獲 Microsoft 頒發全港最佳 Microsoft 授權培訓中心 (Best Microsoft Certified Partner for Learning Solutions of the Year) 及被 Adobe 選定為 Adobe CS4 & CS5 & CS6 & Creative Cloud 指定認可培訓中心。最近,Feva Works 更連續 10 年獲e-zone 電腦雜誌頒發最佳IT培訓中心。

注意事項:

課程內容:

MOC 20774 - Perform Cloud Data Science with Azure Machine Learning
Module 1: Introduction to Azure Machine Learning

Describe the purpose of Azure Machine Learning, and list the main features of Azure Machine Learning Studio.

Lessons
  • Azure machine learning overview
  • Introduction to Azure machine learning studio
  • Developing and hosting Azure machine learning applications
     

Lab : Introduction to Azure machine learning

  • Explore the Azure machine learning studio workspace
  • Clone and run a simple experiment
  • Clone an experiment, make some simple changes, and run the experiment
     

Module 2: Managing Datasets

At the end of this module the student will be able to upload and explore various types of data in Azure machine learning.

Lessons

  • Categorizing your data
  • Importing data to Azure machine learning
  • Exploring and transforming data in Azure machine learning
     

Lab : Managing Datasets

  • Prepare Azure SQL database
  • Import data
  • Visualize data
  • Summarize data
     

Module 3: Preparing Data for use with Azure Machine Learning

This module provides techniques to prepare datasets for use with Azure machine learning.

Lessons

  • Data pre-processing
  • Handling incomplete datasets
     

Lab : Preparing data for use with Azure machine learning

  • Explore some data using Power BI
  • Clean the data
     

Module 4: Using Feature Engineering and Selection

This module describes how to explore and use feature engineering and selection techniques on datasets that are to be used with Azure machine learning.

Lessons

  • Using feature engineering
  • Using feature selection
     

Lab : Using feature engineering and selection

  • Prepare datasets
  • Use Join to Merge data
     

Module 5: Building Azure Machine Learning Models

This module describes how to use regression algorithms and neural networks with Azure machine learning.

Lessons

  • Azure machine learning workflows
  • Scoring and evaluating models
  • Using regression algorithms
  • Using neural networks
     

Lab : Building Azure machine learning models

  • Using Azure machine learning studio modules for regression
  • Create and run a neural-network based application
     

Module 6: Using R and Python with Azure Machine Learning

This module describes how to use R and Python with azure machine learning and choose when to use a particular language.

Lessons

  • Using R
  • Using Python
  • Incorporating R and Python into Machine Learning experiments
     

Lab : Using R and Python with Azure machine learning

  • Exploring data using R
  • Analyzing data using Python
     

Module 7: Initializing and Optimizing Machine Learning Models

This module describes how to use hyper-parameters and multiple algorithms and models, and be able to score and evaluate models.

Lessons

  • Using hyper-parameters
  • Using multiple algorithms and models
  • Scoring and evaluating Models
     

Lab : Initializing and optimizing machine learning models

  • Using hyper-parameters
     

Module 8: Using Azure Machine Learning Models

This module explores how to provide end users with Azure machine learning services, and how to share data generated from Azure machine learning models.

Lessons

  • Deploying and publishing models
  • Consuming Experiments
     

Lab : Using Azure machine learning models

  • Deploy machine learning models
  • Consume a published model
     

Module 9: Using Cognitive Services

This module introduces the cognitive services APIs for text and image processing to create a recommendation application, and describes the use of neural networks with Azure machine learning.

Lessons

  • Cognitive services overview
  • Processing language
  • Processing images and video
  • Recommending products
     

Lab : Using Cognitive Services

  • Build a language application
  • Build a face detection application
  • Build a recommendation application
     

Module 10: Using Machine Learning with HDInsight

This module describes how use HDInsight with Azure machine learning.

Lessons

  • Introduction to HDInsight
  • HDInsight cluster types
  • HDInsight and machine learning models
     

Lab : Machine Learning with HDInsight

  • Provision an HDInsight cluster
  • Use the HDInsight cluster with MapReduce and Spark
     

Module 11: Using R Services with Machine Learning

This module describes how to use R and R server with Azure machine learning, and explain how to deploy and configure SQL Server and support R services.

Lessons

  • R and R server overview
  • Using R server with machine learning
  • Using R with SQL Server
     

Lab : Using R services with machine learning

  • Deploy DSVM
  • Prepare a sample SQL Server database and configure SQL Server and R
  • Use a remote R session
  • Execute R scripts inside T-SQL statements
     

課程時間表:

 
MS2077418110015 
日期 2018/11/30 - 2019/01/18
時間 19:00-22:00 (FRI)
合共 24小時
地點 長沙灣分校
費用 $ 4000


 
MS2077419010015 
日期 2019/01/24 - 2019/03/21
時間 19:00-22:00 (THU)
合共 24小時
地點 長沙灣分校
費用 $ 4000