課程資料
MOC 20774 - Perform Cloud Data Science with Azure Machine Learning (Fast Track)
MS20774
 
若想更了解以上資訊,歡迎致電 3106 8211 查詢。
 
課程費用: $4000

 
課程費用無須申請任何政府基金資助。

繳費方法:

一般課程:按月等額收取列明的課程費用。本中心將不早於課程開始的一個月前收取第一期費用。除第一期的費用外,每期的費用會在課程進行期間每月的首個上學日或之後收取。

組合課程:若該課程為組合課程,本中心將按該組合課程分科收費,直至所收學費為該組合課程的等額費用為止。

 
退款安排: 本中心備有完善之退款政策及程序。學生將會於報讀課程前獲發有關之文件,學員亦可按此閱讀。
 
質素保證: 本中心備有完善之免費補堂,免費重讀及彈性上課安排,令學員更有保障。
 
   
理論: 0小時 實習: 24小時 示範: 0小時

合共: 24小時

 


注意事項:


 
課程內容:
MOC 20774 - Perform Cloud Data Science with Azure Machine Learning
Module 1: Introduction to Azure Machine Learning

Describe the purpose of Azure Machine Learning, and list the main features of Azure Machine Learning Studio.

Lessons
  • Azure machine learning overview
  • Introduction to Azure machine learning studio
  • Developing and hosting Azure machine learning applications
     

Lab : Introduction to Azure machine learning

  • Explore the Azure machine learning studio workspace
  • Clone and run a simple experiment
  • Clone an experiment, make some simple changes, and run the experiment
     

Module 2: Managing Datasets

At the end of this module the student will be able to upload and explore various types of data in Azure machine learning.

Lessons

  • Categorizing your data
  • Importing data to Azure machine learning
  • Exploring and transforming data in Azure machine learning
     

Lab : Managing Datasets

  • Prepare Azure SQL database
  • Import data
  • Visualize data
  • Summarize data
     

Module 3: Preparing Data for use with Azure Machine Learning

This module provides techniques to prepare datasets for use with Azure machine learning.

Lessons

  • Data pre-processing
  • Handling incomplete datasets
     

Lab : Preparing data for use with Azure machine learning

  • Explore some data using Power BI
  • Clean the data
     

Module 4: Using Feature Engineering and Selection

This module describes how to explore and use feature engineering and selection techniques on datasets that are to be used with Azure machine learning.

Lessons

  • Using feature engineering
  • Using feature selection
     

Lab : Using feature engineering and selection

  • Prepare datasets
  • Use Join to Merge data
     

Module 5: Building Azure Machine Learning Models

This module describes how to use regression algorithms and neural networks with Azure machine learning.

Lessons

  • Azure machine learning workflows
  • Scoring and evaluating models
  • Using regression algorithms
  • Using neural networks
     

Lab : Building Azure machine learning models

  • Using Azure machine learning studio modules for regression
  • Create and run a neural-network based application
     

Module 6: Using R and Python with Azure Machine Learning

This module describes how to use R and Python with azure machine learning and choose when to use a particular language.

Lessons

  • Using R
  • Using Python
  • Incorporating R and Python into Machine Learning experiments
     

Lab : Using R and Python with Azure machine learning

  • Exploring data using R
  • Analyzing data using Python
     

Module 7: Initializing and Optimizing Machine Learning Models

This module describes how to use hyper-parameters and multiple algorithms and models, and be able to score and evaluate models.

Lessons

  • Using hyper-parameters
  • Using multiple algorithms and models
  • Scoring and evaluating Models
     

Lab : Initializing and optimizing machine learning models

  • Using hyper-parameters
     

Module 8: Using Azure Machine Learning Models

This module explores how to provide end users with Azure machine learning services, and how to share data generated from Azure machine learning models.

Lessons

  • Deploying and publishing models
  • Consuming Experiments
     

Lab : Using Azure machine learning models

  • Deploy machine learning models
  • Consume a published model
     

Module 9: Using Cognitive Services

This module introduces the cognitive services APIs for text and image processing to create a recommendation application, and describes the use of neural networks with Azure machine learning.

Lessons

  • Cognitive services overview
  • Processing language
  • Processing images and video
  • Recommending products
     

Lab : Using Cognitive Services

  • Build a language application
  • Build a face detection application
  • Build a recommendation application
     

Module 10: Using Machine Learning with HDInsight

This module describes how use HDInsight with Azure machine learning.

Lessons

  • Introduction to HDInsight
  • HDInsight cluster types
  • HDInsight and machine learning models
     

Lab : Machine Learning with HDInsight

  • Provision an HDInsight cluster
  • Use the HDInsight cluster with MapReduce and Spark
     

Module 11: Using R Services with Machine Learning

This module describes how to use R and R server with Azure machine learning, and explain how to deploy and configure SQL Server and support R services.

Lessons

  • R and R server overview
  • Using R server with machine learning
  • Using R with SQL Server
     

Lab : Using R services with machine learning

  • Deploy DSVM
  • Prepare a sample SQL Server database and configure SQL Server and R
  • Use a remote R session
  • Execute R scripts inside T-SQL statements
     
 
 
如有任何有關課程之查詢,歡迎致電 3106 8211 與我們的客戶關係主任聯絡。
 
MS2077419070015 
日期 9/7/2019~27/8/2019 (TUE)
時間 19:00~22:00 
合共 24 小時
上課地點 長沙灣分校
課程費用 $ 4000

 
MS2077419050015 
日期 30/5/2019~25/7/2019 (THU)
時間 19:00~22:00 
合共 24 小時
上課地點 長沙灣分校
課程費用 $ 4000